- 1. Find the area inside the region bounded by $r = 3 + 3\sin\theta$.
- 2. Consider the curves $r = 1 + \sin \theta$ and $r = 3 \sin \theta$.
 - (a) Sketch the curves.
 - (b) Find the values of θ where the curves intersect.
 - (c) Find the area of the region inside both curves.
 - (d) Find the area of the region inside $r = 3 \sin \theta$ and outside $r = 1 + \sin \theta$.
- 3. Consider the curve $r = 2 \csc \theta$.
 - (a) Convert this curve into rectangular coordinates. This will give us a parametrization with θ serving the role of t.
 - (b) What is the slope of the curve at any point (x, y)?
 - (c) Find the length of the curve from $\theta = \pi/6$ to $\theta = \pi/2$.
- 4. Find the arclength of the cardioid $r = 3 + 3\sin\theta$.